Mandibular third molar space in different antero-posterior skeletal patterns

E. S. J. Abu Alhaija, H. M. AlBhairan and S. N. AlKhateeb
Department of Preventive Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan

Correspondence to: Professor E. S. J. Abu Alhaija, Department of Preventive Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, PO Box 3030, Irbid, Jordan. E-mail: elham@just.edu.jo

SUMMARY Retromolar space has long been identified as a major factor in the aetiology of mandibular third molar impaction. The aims of this study were to compare mandibular third molar space between the different antero-posterior (A-P) skeletal patterns, between erupted and impacted third molars in the different A-P skeletal patterns, and to report on the status of third molar eruption/impaction among the studied subjects.

A total of 432 mandibular third molars in 270 subjects (132 females and 138 males) were investigated from dental pantomograms (DPTs) and lateral cephalograms (LC). The average age for the total sample was 20.80±2.03 years. The subjects were divided into three groups according to their ANB angle as follows: skeletal Class I (144 third molars in 90 subjects), skeletal Class II (145 third molars in 95 subjects), and skeletal Class III (143 third molars in 85 subjects). Each group was subdivided into impacted and erupted subgroups. DPT and LC were traced and the following variables were measured: retromolar space width, third molar width and angulation, β angle, second molar angulation, mandibular length, and gonial angle. Independent t-test, analysis of variance, and chi-square test were used for statistical analysis.

Retromolar space width in the Class III subjects was smaller than in the Class I subjects (P<0.05). Mandibular third molars were recorded as impacted in 26, 32, and 42 per cent of the Class I, II, and III subjects, respectively (P<0.001). The impacted groups had a reduced retromolar space width, increased β angle, and reduced third molar angulation in all A-P skeletal patterns. Class III subjects showed increased mandibular third molar impaction with reduced retromolar space width.

Introduction

The rate of third molar impaction is higher than for other teeth in modern populations (Bishara and Andreasen, 1983; Grover and Lorton, 1985). The mandibular third molar is by far the most frequently impacted tooth after the maxillary third molar (Bishara and Andreasen, 1983; Grover and Lorton, 1985; Alling and Alling, 1993). They account for 98 per cent of all impacted teeth (Bishara, 1999).

It has been reported that approximately 73 per cent of young adults may have at least one impacted mandibular third molar (Hugoson and Kugelberg, 1988). The prevalence of mandibular third molar impaction varies in different populations, ranging from 18 to 32 per cent (Andreasen, 1997). Most studies have reported no gender predilection in Caucasian (Brown et al., 1982), Negro (Kramer and Williams, 1970; Brown et al., 1982), Arab (Haidar and Shallhoub, 1986; Hattab et al., 1995), or Chinese (Montelius, 1932) populations. However, other studies reported a higher frequency in female Caucasians (Murtomaa et al., 1985; Hugoson and Kugelberg, 1988).

The time of eruption of third molars varies significantly between populations, ranging from 14 years in Nigerians (Odusanya and Abayomi, 1991) to 24 years in Greeks (Haralabakis, 1957), with males 3–6 months ahead of females.

Shortage of space between the second molar and the ramus has long been identified as a major factor in the aetiology of mandibular third molar impaction (Björk, 1963; Olive and Basford, 1981; Alling and Alling, 1993; Hattab and Abu Alhaija, 1999; Behbehani et al., 2006; Uthman, 2007). Björk et al. (1956) noted that in subjects with mandibular third molar impaction, the alveolar arch space behind the second molar was reduced in 90 per cent of the cases. It has been reported that the space necessary for the third molar is diminished by several factors, including backward direction of eruption of the dentition (Björk et al., 1956; Richardson, 1977; Capelli, 1991) and vertical direction of condylar growth, which has been associated with less resorption at the anterior aspect of the ramus (Björk, 1963). Another suggested factor that influences third molar impaction is mandibular length (Björk et al., 1956; Richardson, 1977; Capelli, 1991). It has been suggested that a short mandibular length predisposes to mandibular third molar impaction (Björk et al., 1956; Richardson, 1977; Ricketts, 1979). However, Kaplan (1975) and Dierkes (1975) did not find significant differences in...
mandibular length between subjects with impacted and erupted teeth.

It has been reported that subjects with third molar impaction possess larger third molars than those with erupted third molars (Richardson, 1977; Ng et al., 1986; Ventä et al., 1997; Hattab and Abu Alhaija, 1999).

In a study to investigate symmetry of third molar space and angulation in Class II subdivision malocclusions, Janson et al. (2007) reported significant differences in maxillary and mandibular third molar space availability and in third molar angulation between Class I and Class II molar sides.

Little research has been conducted on mandibular third molar space and the status of third molar eruption/impaction in the different antero-posterior (A-P) skeletal patterns. The aims of this study were to compare mandibular third molar space between the different A-P skeletal patterns, to compare mandibular third molar space between erupted and impacted molar teeth in the different A-P skeletal patterns, and to report on the status of third molar eruption/impaction among the studied subjects.

Materials and methods

The study was carried out on diagnostic (pre-treatment) lateral cephalometric (LC) films and dental pantomograms (DPTs) available in the archive of the Dental Teaching Center of Jordan University of Science and Technology. A total of 432 third molars in 270 Caucasian subjects (132 females and 138 males) were included in this study (Table 1). A total of 108 subjects had unilateral presence of third molars. Subjects included in this study fulfilled the following criteria: at least 18 years of age, no previous orthodontic or orthognathic surgical treatment, no missing or extracted permanent teeth, no history of medical conditions that could have altered the growth of the apical base, and average maxillomandibular planes (MM) angle 27±5 degrees. MM angle averaged 26.73±2.42 degrees.

Patients with pathological conditions related to mandibular second and third molars such as cysts or erupted third molars (Richardson, 1977; Ng et al., 1986; Ventä et al., 1997; Hattab and Abu Alhaija, 1999).

Table 1 Distribution of subjects in this study.

<table>
<thead>
<tr>
<th>Skeletal Relationship</th>
<th>Females (no. of third molars/no. of subjects)</th>
<th>Males (no. of third molars/no. of subjects)</th>
<th>Total (no. of third molars/no. of subjects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I skeletal relationship</td>
<td>75/47</td>
<td>69/43</td>
<td>144/90</td>
</tr>
<tr>
<td>Class II skeletal relationship</td>
<td>76/50</td>
<td>69/45</td>
<td>145/95</td>
</tr>
<tr>
<td>Class III skeletal relationship</td>
<td>58/35</td>
<td>85/50</td>
<td>143/85</td>
</tr>
</tbody>
</table>

The age of subjects in this study ranged between 18 and 30 years. The average age for the total sample was 20.80±2.03 years. The subjects were divided into three groups according to their ANB angle as follows:

Skeletal Class I (ANB 1–5 degrees)—144 third molars in 90 subjects (47 females and 43 males). ANB angle averaged 2.62±1.16 degrees (2.60±1.13 and 2.65±1.19 in females and males, respectively).

Skeletal Class II (ANB more than 5 degrees)—145 third molars in 95 subjects (50 females and 45 males). Average ANB angle was 6.32±1.39 degrees (6.13±1.18 and 6.42±1.46 in females and males, respectively).

Skeletal Class III (ANB less than 1 degree)—143 third molars in 85 subjects (35 females and 50 males). ANB angle averaged −2.20±0.64 degrees (−1.93±1.88 and −2.36±3.04 in females and males, respectively).

LC were taken for each participant in centric occlusion with the lips in repose and the Frankfort plane horizontal, according to the natural head position, using an Orthoslice 1000 C (Trophy, Marne La Vallee Cedex 2, France) cephalostat at 64 KVp, 16 mA, and 0.64 seconds exposure. LC were used to allocate subjects to their groups based on ANB angle and to measure mandibular length (Ar–Gn, Ar–Go, and Go–Gn). A DPT was taken for each participant with the upper and lower incisors in an edge-to-edge relationship using the Orthoslice 1000 C cephalostat at 64 KVp, 16 mA. The DPTs were traced manually by the same investigator (HMA) in a darkened room on acetate tracing paper using a 0.3 mm HB mechanical pencil. Two linear and three angular measurements (Figure 1) were recorded. Measurements were performed manually using a ruler to the nearest 0.1 mm. The third molar status of eruption was recorded as erupted or impacted. For the purpose of this study, a third molar was deemed to be impacted when its normal path of eruption was impeded or blocked by an adjacent second molar (Raghoebbar et al., 1991).

Method error

Ten radiographs were randomly selected and remeasured by the same examiner after a period of 1 week. The formula of Dahlberg (1940) was used to calculate the standard error of the method \(S = \sqrt{\frac{\sum d^2}{2n}} \). The coefficient of reliability (Houston, 1983) was calculated for the numerical data and kappa test was used to determine intra-examiner reliability for the categorical variables. Dahlberg error ranged from 0.23 mm for third molar width, 0.34 mm for mandibular length, 0.32 degrees for second molar angulation, to 0.43 degrees for \(\beta \) angle. The coefficient of reliability and kappa scores were above 90 per cent for all measured variables.

Statistical analysis

Data analysis was carried out using the Statistical Package for Social Sciences (version 15.0; SPSS Inc., Chicago,
Illinois, USA). An independent t-test was used to detect gender differences. Analysis of variance (ANOVA) was used to determine whether significant differences existed between the groups. Bonferroni multiple comparison test was applied to identify which of the groups were different. A chi-square test was applied to identify differences between groups with respect to the eruption/impaction status of third molars.

Results

The means, standard deviations, and mean differences of all measured parameters for females, males, and the total sample in each A-P skeletal pattern are shown in Table 2.

In Class I, gender differences were found for third molar width ($P<0.001$), second molar angulation ($P<0.05$), Ar–Gn ($P<0.001$), Ar–Go ($P<0.05$), and Go–Gn ($P<0.001$). In Class II, no gender differences were detected. In Class III, gender differences were observed in retromolar space width ($P<0.001$), second molar angulation ($P<0.01$), Ar–Gn ($P<0.001$), Ar–Go ($P<0.001$), and Go–Gn ($P<0.001$).

For the total sample, gender differences were found in retromolar space width ($P<0.01$), third molar width ($P<0.01$), β angle ($P<0.05$), second molar angulation ($P<0.01$), Ar–Gn ($P<0.001$), Ar–Go ($P<0.001$), Go–Gn ($P<0.001$), and gonial angle ($P<0.01$).

The status of third molar eruption/impaction in the different A-P skeletal patterns is shown in Table 3. Third molars were recorded as impacted in 26, 32, and 42 per cent of Class I, II, and III subjects, respectively. Significant differences were observed in the frequency of impaction in the different A-P skeletal patterns in the female group and in the total sample ($P<0.001$).

When impacted lower third molars were compared with erupted third molars (Table 4), retromolar space was reduced ($P<0.001$), β angle was increased ($P<0.001$), and third molar angulation was reduced ($P<0.001$) in all A-P skeletal patterns. Gonial angle was increased in the impacted Class I third molar group. Second molar angulation was reduced in the Class II impacted third molar group ($P<0.05$).

Comparisons between A-P skeletal patterns

F values for ANOVA test, mean differences, and the level of significance of the differences between radiographic variables in the different A-P skeletal patterns are shown in Table 5.

Total sample

Retromolar space width was smaller compared with Class I ($P<0.05$) subjects. Mandibular length in subjects with a Class III skeletal pattern was significantly longer than in the Class I and Class II subjects ($P<0.001$).

Females

Overall, retromolar space width was smaller in Class III females compared with Class I and Class II females ($P<0.05$). In Class III females, overall mandibular length (Ar–Gn) and mandibular body length (Go–Gn) were significantly longer than those of Class I and Class II subjects ($P<0.001$ and $P<0.01$, respectively).

Males

The only significant difference between the different groups of males was mandibular length. In Class III males, Ar–Gn, Ar–Go, and Go–Gn lengths were significantly longer than those of Class I ($P<0.001$) and Class II ($P<0.001$) subjects.

Discussion

In this research, retromolar space width and other related mandibular third molar variables were evaluated using DPT and LC. It has been demonstrated that panoramic radiography can provide measurements as reliable as those of LC (Mattilla et al., 1977; Abu Alhaija, 2005). Of the radiographic techniques used to assess lower third molar space and mandibular linear dimensions and angles, it has been reported that panoramic radiography yielded accurate estimates (Kaplan, 1975; Olive and Basford, 1981). The
right and left sides can be measured separately without any superimposition (Uthman, 2007).

Although Behbehani et al. (2006) considered that retromolar space width is more accurately determined when the Xi point (Ricketts, 1979) is used as the posterior point, in the present study, retromolar space was measured as the distance between the distal contact point of the second molar and the junction of the anterior border of the ramus with the body of the mandible (Legović et al., 2008) to enable measurement of the right and left sides separately using DPT.

Retromolar space width was reduced in all impacted groups in the different A-P skeletal patterns. This confirms previous reports that a shortage of retromolar space is a major factor in the aetiology of mandibular third molar impaction (Björk, 1963; Olive and Basford, 1981; Alling and Alling, 1993; Hattab and Abu Alhaija, 1999; Behbehani et al., 2006; Uthman, 2007). However, when retromolar space width was compared in the different A-P skeletal patterns, it was reduced in Class III subjects.

Richardson (1977) suggested that a short mandibular length predisposed to mandibular third molar impaction. In this study, no significant differences were detected between the erupted and impacted groups for any mandibular length measurement (Ar–Gn, Ar–Go, and Go–Gn) in the different A-P skeletal patterns. This is in agreement with Kaplan (1975) and Dierkes (1975) who suggested that there was no
Table 3 Status of third molar eruption in the different anteroposterior skeletal patterns.

<table>
<thead>
<tr>
<th>Skeletal Class Status</th>
<th>Females</th>
<th>Males</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erupted</td>
<td>47 (62.7%)</td>
<td>44 (63.8%)</td>
<td>91 (63.2%)</td>
</tr>
<tr>
<td>Impacted</td>
<td>28 (37.3%)</td>
<td>25 (36.2%)</td>
<td>53 (36.8%)</td>
</tr>
<tr>
<td>Erupted</td>
<td>42 (55.3%)</td>
<td>38 (54.6%)</td>
<td>80 (54.9%)</td>
</tr>
<tr>
<td>Impacted</td>
<td>34 (44.7%)</td>
<td>31 (45.6%)</td>
<td>65 (45.1%)</td>
</tr>
<tr>
<td>Erupted</td>
<td>18 (31.0%)</td>
<td>38 (44.7%)</td>
<td>56 (39.2%)</td>
</tr>
<tr>
<td>Impacted</td>
<td>40 (69.0%)</td>
<td>47 (55.3%)</td>
<td>87 (60.8%)</td>
</tr>
</tbody>
</table>

Pearson’s chi-square test: Erupted: 13.89***; Impacted: 17.13***

***p<0.001.

Table 4 Means, standard deviations (SDs), mean differences, and P values for the mandibular radiographic variables in all groups according to status of eruption.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Erupted (E), mean±SD</th>
<th>Impacted (I), mean±SD</th>
<th>Mean difference (E and I)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal Class I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retromolar space (mm)</td>
<td>15.14±3.63</td>
<td>11.35±3.14</td>
<td>3.79</td>
<td>***</td>
</tr>
<tr>
<td>Third molar width (mm)</td>
<td>12.84±1.30</td>
<td>12.45±1.79</td>
<td>0.39</td>
<td>NS</td>
</tr>
<tr>
<td>β Angle</td>
<td>5.37±10.73</td>
<td>26.04±13.15</td>
<td>-20.66</td>
<td>***</td>
</tr>
<tr>
<td>Third molar angulation</td>
<td>82.11±15.01</td>
<td>64.09±15.16</td>
<td>18.02</td>
<td>***</td>
</tr>
<tr>
<td>Second molar angulation</td>
<td>89.11±7.19</td>
<td>91.32±5.88</td>
<td>-2.21</td>
<td>NS</td>
</tr>
<tr>
<td>Ar-Gn (mm)</td>
<td>112.39±7.17</td>
<td>112.23±7.09</td>
<td>0.16</td>
<td>NS</td>
</tr>
<tr>
<td>Ar-Go (mm)</td>
<td>45.55±4.82</td>
<td>47.00±5.22</td>
<td>-1.45</td>
<td>NS</td>
</tr>
<tr>
<td>Go-Gn (mm)</td>
<td>73.10±8.10</td>
<td>73.23±5.64</td>
<td>-0.13</td>
<td>NS</td>
</tr>
<tr>
<td>Gonial angle</td>
<td>122.35±8.07</td>
<td>125.79±7.00</td>
<td>-3.44</td>
<td>**</td>
</tr>
<tr>
<td>Skeletal Class II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retromolar space (mm)</td>
<td>15.01±3.00</td>
<td>11.57±2.86</td>
<td>3.44</td>
<td>***</td>
</tr>
<tr>
<td>Third molar width (mm)</td>
<td>13.16±4.44</td>
<td>12.87±1.54</td>
<td>0.30</td>
<td>NS</td>
</tr>
<tr>
<td>β Angle</td>
<td>6.11±10.54</td>
<td>28.63±14.56</td>
<td>-22.52</td>
<td>***</td>
</tr>
<tr>
<td>Third molar angulation</td>
<td>81.92±12.60</td>
<td>57.86±16.97</td>
<td>24.06</td>
<td>***</td>
</tr>
<tr>
<td>Second molar angulation</td>
<td>90.59±6.76</td>
<td>87.95±7.20</td>
<td>2.64</td>
<td>*</td>
</tr>
<tr>
<td>Ar-Gn (mm)</td>
<td>109.88±13.18</td>
<td>110.33±5.67</td>
<td>-0.45</td>
<td>NS</td>
</tr>
<tr>
<td>Ar-Go (mm)</td>
<td>46.01±4.03</td>
<td>45.27±3.82</td>
<td>0.75</td>
<td>NS</td>
</tr>
<tr>
<td>Go-Gn (mm)</td>
<td>73.44±5.10</td>
<td>72.76±4.18</td>
<td>0.69</td>
<td>NS</td>
</tr>
<tr>
<td>Gonial angle</td>
<td>125.01±7.66</td>
<td>123.13±8.20</td>
<td>1.88</td>
<td>NS</td>
</tr>
<tr>
<td>Skeletal Class III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retromolar space (mm)</td>
<td>14.44±2.65</td>
<td>11.49±3.05</td>
<td>2.94</td>
<td>***</td>
</tr>
<tr>
<td>Third molar width (mm)</td>
<td>12.35±1.22</td>
<td>12.66±1.54</td>
<td>-0.31</td>
<td>NS</td>
</tr>
<tr>
<td>β Angle</td>
<td>1.86±7.27</td>
<td>23.44±15.05</td>
<td>-21.58</td>
<td>***</td>
</tr>
<tr>
<td>Third molar angulation</td>
<td>88.96±17.15</td>
<td>65.37±16.29</td>
<td>23.60</td>
<td>***</td>
</tr>
<tr>
<td>Second molar angulation</td>
<td>92.23±8.23</td>
<td>89.92±7.28</td>
<td>2.31</td>
<td>NS</td>
</tr>
<tr>
<td>Ar-Gn (mm)</td>
<td>117.48±6.85</td>
<td>119.42±6.03</td>
<td>-1.94</td>
<td>NS</td>
</tr>
<tr>
<td>Ar-Go (mm)</td>
<td>47.92±5.44</td>
<td>48.50±5.02</td>
<td>-0.58</td>
<td>NS</td>
</tr>
<tr>
<td>Go-Gn (mm)</td>
<td>78.94±4.20</td>
<td>78.01±3.98</td>
<td>0.92</td>
<td>NS</td>
</tr>
<tr>
<td>Gonial angle</td>
<td>123.49±7.07</td>
<td>125.38±8.41</td>
<td>-1.89</td>
<td>NS</td>
</tr>
<tr>
<td>Total sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retromolar space (mm)</td>
<td>14.94±3.19</td>
<td>11.48±3.00</td>
<td>3.46</td>
<td>***</td>
</tr>
<tr>
<td>Third molar width (mm)</td>
<td>12.84±2.82</td>
<td>12.67±1.60</td>
<td>0.17</td>
<td>NS</td>
</tr>
<tr>
<td>β Angle</td>
<td>4.74±10.74</td>
<td>25.76±14.53</td>
<td>-21.02</td>
<td>***</td>
</tr>
<tr>
<td>Third molar angulation</td>
<td>83.78±15.01</td>
<td>62.66±16.91</td>
<td>20.12</td>
<td>***</td>
</tr>
<tr>
<td>Second molar angulation</td>
<td>90.38±7.38</td>
<td>89.66±7.00</td>
<td>0.72</td>
<td>NS</td>
</tr>
<tr>
<td>Ar-Gn (mm)</td>
<td>112.72±9.87</td>
<td>113.08±7.16</td>
<td>-0.36</td>
<td>NS</td>
</tr>
<tr>
<td>Ar-Go (mm)</td>
<td>46.37±4.87</td>
<td>46.66±4.79</td>
<td>-0.29</td>
<td>NS</td>
</tr>
<tr>
<td>Go-Gn (mm)</td>
<td>74.87±6.78</td>
<td>74.22±5.14</td>
<td>0.65</td>
<td>NS</td>
</tr>
<tr>
<td>Gonial angle</td>
<td>123.51±7.72</td>
<td>124.63±7.88</td>
<td>-1.12</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS, not significant. *p<0.05, **p<0.01, ***p<0.001.
impacted third molars. The reduced retromolar space width found in Class III subjects may explain the high impaction rate reported in research those subjects. Behbehani et al. (2006) suggested an association between mandibular size and retromolar space, with the latter being the most important.

Second and third molar angulations did not differ between the different A-P skeletal patterns. However, they were reduced in all impacted groups. This was in agreement with Behbehani et al. (2006) who suggested that increased mesial angulation of the third molar bud increased the risk of impaction.

In this study, third molar width did not differ between subjects with impacted and erupted third molars. In addition, no differences were observed among the different A-P skeletal patterns. This is in contrary to Ventä et al. (1997), who reported that subjects with third molar impaction possess larger third molars than those in which the third molars are erupted. β angle did not differ between the different A-P skeletal patterns. However, when the erupted and impacted third molar groups were compared, β angle was increased in all impacted groups. This was in agreement with Uthman (2007) who suggested that β angle showed a marked increase in the marginal eruption group compared with the full eruption group.

Third molar angulation did not differ between the different A-P skeletal patterns. Comparisons of the angulation of the impacted and erupted mandibular third molars in the different A-P skeletal patterns revealed that third molar angulation was reduced in all groups. However, third molar angulation in Class II subjects was the most reduced. This may be explained by the small mandibular length in these subjects that may have limited the uprighting of third molars during development (Richardson, 1977). That author suggested that a more acute angle was more common among subjects with impacted third molars. In this study, gonial angle was increased in the impacted group of Class I subjects while it showed no differences between the impacted and erupted groups of Class II and Class III subjects. This is contrary to the findings of Behbehani et al. (2006) that a small gonial angle is associated with an increased risk of impaction. However, the selection criteria in this study included subjects with average vertical skeletal patterns (average maxillary/mandibular planes angle), which renders this variable difficult to evaluate.

Table 5

<table>
<thead>
<tr>
<th>Variables</th>
<th>ANOVA, F value</th>
<th>MD, Class I and Class II</th>
<th>MD, Class I and Class III</th>
<th>MD, Class II and Class III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retromolar space (mm)</td>
<td>4.89**</td>
<td>−0.08</td>
<td>1.59*</td>
<td>1.68*</td>
</tr>
<tr>
<td>Third molar width (mm)</td>
<td>2.45</td>
<td>−0.43</td>
<td>0.03</td>
<td>0.46</td>
</tr>
<tr>
<td>β angle</td>
<td>0.66</td>
<td>−2.32</td>
<td>−2.34</td>
<td>−0.01</td>
</tr>
<tr>
<td>Third molar angulation</td>
<td>1.29</td>
<td>4.49</td>
<td>2.32</td>
<td>−2.16</td>
</tr>
<tr>
<td>Second molar angulation</td>
<td>0.04</td>
<td>0.29</td>
<td>0.06</td>
<td>−0.22</td>
</tr>
<tr>
<td>Ar–Gn (mm)</td>
<td>17.57***</td>
<td>0.00</td>
<td>−7.05***</td>
<td>−7.05***</td>
</tr>
<tr>
<td>Ar–Go (mm)</td>
<td>0.45</td>
<td>−0.38</td>
<td>0.15</td>
<td>0.53</td>
</tr>
<tr>
<td>Go–Gn (mm)</td>
<td>15.61***</td>
<td>−1.55</td>
<td>−5.32**</td>
<td>−3.77**</td>
</tr>
<tr>
<td>Gonial angle</td>
<td>0.06</td>
<td>0.32</td>
<td>0.02</td>
<td>−0.30</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retromolar space (mm)</td>
<td>1.52</td>
<td>0.71</td>
<td>0.99</td>
<td>0.28</td>
</tr>
<tr>
<td>Third molar width (mm)</td>
<td>0.91</td>
<td>−0.20</td>
<td>0.41</td>
<td>0.62</td>
</tr>
<tr>
<td>β angle</td>
<td>1.12</td>
<td>−4.41</td>
<td>−1.23</td>
<td>3.18</td>
</tr>
<tr>
<td>Third molar angulation</td>
<td>1.21</td>
<td>4.23</td>
<td>−3.51</td>
<td>−4.95</td>
</tr>
<tr>
<td>Second molar angulation</td>
<td>1.23</td>
<td>0.68</td>
<td>−1.15</td>
<td>−1.84</td>
</tr>
<tr>
<td>Ar–Gn (mm)</td>
<td>41.66***</td>
<td>4.33***</td>
<td>−4.96***</td>
<td>−9.20***</td>
</tr>
<tr>
<td>Ar–Go (mm)</td>
<td>14.63***</td>
<td>1.30</td>
<td>−2.59***</td>
<td>−3.89***</td>
</tr>
<tr>
<td>Go–Gn (mm)</td>
<td>55.60***</td>
<td>2.25***</td>
<td>−4.25***</td>
<td>−6.50***</td>
</tr>
<tr>
<td>Gonial angle</td>
<td>0.67</td>
<td>0.21</td>
<td>−0.76</td>
<td>−0.97</td>
</tr>
<tr>
<td>Total sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retromolar space (mm)</td>
<td>3.74*</td>
<td>0.30</td>
<td>1.10*</td>
<td>0.80</td>
</tr>
<tr>
<td>Third molar width (mm)</td>
<td>1.61</td>
<td>−0.32</td>
<td>0.16</td>
<td>0.48</td>
</tr>
<tr>
<td>β angle</td>
<td>1.53</td>
<td>−3.30</td>
<td>−2.01</td>
<td>1.30</td>
</tr>
<tr>
<td>Third molar angulation</td>
<td>2.12</td>
<td>4.36</td>
<td>0.87</td>
<td>−3.48</td>
</tr>
<tr>
<td>Second molar angulation</td>
<td>1.38</td>
<td>0.48</td>
<td>−0.91</td>
<td>−1.40</td>
</tr>
<tr>
<td>Ar–Gn (mm)</td>
<td>40.92***</td>
<td>1.95*</td>
<td>−6.09***</td>
<td>−8.05***</td>
</tr>
<tr>
<td>Ar–Go (mm)</td>
<td>10.23***</td>
<td>0.40</td>
<td>−1.73***</td>
<td>−2.13***</td>
</tr>
<tr>
<td>Go–Gn (mm)</td>
<td>54.61***</td>
<td>0.24</td>
<td>−5.11***</td>
<td>−5.32***</td>
</tr>
<tr>
<td>Gonial angle</td>
<td>0.19</td>
<td>0.31</td>
<td>−0.17</td>
<td>−0.48</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01, ***p<0.001.
One limitation of the present study is that the subjects were allocated to their groups based on ANB angle. This classification does not identify the aetiology of Class III or Class II skeletal problems and may have masked the effect of the A-P relationship on impaction of lower third molars.

Conclusions

1. Retromolar space width was reduced in Class III subjects compared with Class I and Class II subjects.
2. Impaction of the lower third molar was associated with reduced retromolar space width, increased β angle, and reduced third molar angulation in all A-P skeletal patterns.
3. A higher incidence of lower third molar impaction was found in subjects with a Class III skeletal pattern.

Funding

Deanship of Research/Jordan University of Science and Technology (189/2008).

References

Dierkes D D 1975 An investigation of the mandibular third molars in orthodontic cases. Angle Orthodontist 45: 207–212
Haralabakis H 1957 Observation on the time of eruption, congenital absence, and impaction of the third molar teeth. Transactions of the European Orthodontic Society, pp. 308–309
Richardson M E 1977 The etiology and prediction of mandibular third molar impaction. Angle Orthodontist 47: 165–172
Ricketts R M 1979 Studies leading to the practice of abortion of lower third molars. Dental Clinics of North America 23: 393–411