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                    Introduction 

 Sectional springs can be used to retract canines ( Yang 
and Baldwin, 1974 ;  Bourauel  et al. , 1997 ) as well as to 
act as part of a segmented arch ( Burstone, 1966  ,   1982 ; 
 Manhartsberger  et al. , 1989 ;  Rinaldi and Johnson, 1995 ; 
 Ferreira  et al. , 2005 ) that retracts the anterior segment, the 
posterior segment, or both at the same time, depending on 
the treatment plan (alpha and beta moments and loop 
position will determine the type of tooth movement). The 
effectiveness of a spring is related to its geometry and the 
nature of the wire material ( Burstone  et al. , 1961 ;  Yang and 
Baldwin, 1974 ;  Ferreira, 1999 ). Springs must work within 
an elastic limit, should not harm the adjacent tissues ,  and 
should  have  a force system capable of producing controlled 
movement of one or more teeth. Alloys which are less 
resistant to de ection might be displaced more widely, 
without plastic deformation, and this is a characteristic of 
non-linear systems ( Koenig  et al. , 1980 ;  Koenig and 
Burstone, 1989 ). Among the mechanical properties that 
characterize spring behaviour, spring rate plays a major 
role, for it allows the clinician to know its load de ection 
rate ( Yang and Baldwin, 1974 ;  Burstone, 1982 ). 

 The resulting stress from retraction spring activation lead 
to considerations about its elastic range, that is, how far 
a spring may be activated without surpassing the yield 
strength (YS) considering that once it is attained ,  it will 
no longer respond satisfactorily. Force systems resulting 
from retraction springs produce forces and moments that 
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determine the type of tooth movement, but springs with 
complex designs are not completely isometric and can 
become inaccurate for long activations (more than 3 or 4 
mm). These force systems originating from orthodontic 
appliances have been studied experimentally ( Solonche 
 et al. , 1977 ;  Vanderby  et al. , 1977 ;  Kum  et al. , 2004 ), 
numerically ( Yang and Baldwin, 1974 ;  Haskell  et al. , 1990 ; 
 Raboud  et al. , 1997 ;  Siatkowski, 1997 ;  Coimbra  et al. , 
2008 ) ,  and with dynamic systems ( Rhee  et al. , 1997 ) or 
three-dimensional scanning systems to  analyse  movement 
of rigid bodies ( Rhee  et al. , 2002 ). The  nite element (FE) 
method is used to simulate the behaviour of a body submitted 
to maximum stress. In this way ,  the in uence of basic 
geometric parameters on  a  force system might  if necessary 
 be altered. In experimental methods, the body of evidence is 
submitted to mechanical tests, which might determine the 
force system more accurately. 

 A few studies have reported the stress along the spring 
body ( Ferreira  et al. , 2004 ;  Coimbra  et al. , 2008 ) .  Different 
types of load cells for measuring forces and moments have 
been described ( Solonche  et al. , 1977 ;  Ferreira, 1999 ;  Chen 
 et al. , 2000 ;  Ferreira  et al. , 2005 ;  Thiesen  et al. , 2005 ) 
concerning orthodontic springs where the samples are 
submitted to tension, bending ,  and torsion testing at one or 
both sides of the spring to determine the force generated. 
A number of load cells have been developed to measure 
the degree of torsion (around the  x ,  y  ,  and  z  axes) at the 
extremities of the spring after activation ( Ødegaard  et al. , 
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1996 ;  Torstein  et al. , 1998 ;  Kum  et al. , 2004 ;  Kosol-Ittikul 
 et al. , 2008 ) and to make possible the study of springs with 
different gable bends, i.e.  rst, second ,  and third gable 
bends ( Menghi  et al. , 1999 ;  Katona  et al. , 2006 ). In  the 
 present study ,  a device for measuring forces and moments 
was used ( Ferreira  et al. , 2005 ). 

 The aim of this study was to evaluate and compare the 
results from numerical and experimental tests of an 
orthodontic retraction spring ( Ferreira  et al. , 2005 ). This 
study focused on the von Mises stress obtained with the FE 
method and force system resulting from activation of the 
spring in order to verify the maximum activation limit in 
which it maintains itself within the elastic range and, 
consequently, operational. No torque was measured.  

  Materials and  methods  

  Numerical  method  

 In order to evaluate the springs by means of the FE method, 
the computational software Ansys® (Swanson Analysis 
Systems, Houston, Pennsylvania, USA) was used. The 
basic idea of the method is to split the body or domain 
studied into  sub regions, the FEs. Based on that,  the 
 mathematical equations that govern the phenomenon 
studied for each  sub region (FE) are prepared. The equations 
pertaining to each element are then joined, so that continuity 
is preserved, and one global equation is obtained to represent 
the  entire  body. In the static analysis of stress and strains ,  
the equation ( Cook  et al. , 1998 ) that represents the body is 
given by

   [ ]{ } { },K u F   (1)

where [ K ] is the stiffness matrix, { u } is the nodal displacement 
vector ,  and { F } is the nodal force vector. 

 After  nding the nodal displacements  {   u   }  through the 
solution of the algebraic system shown in  equation (1) , the 
stresses and efforts on the the body may be evaluated. In 
this research, the spring was  analysed  using two-dimensional 
beam FEs, with two nodes per element and three degrees 
of freedom per node, that is, the spring was considered 
as plain.  Figure 1  depicts the spring ’ s dimensions, with 
representation of the wire section dimensions. The  Young ’ s 
 modulus ( E )  obtained by mechanical tension tests  was 69 
GPa (10  ×  10 6  psi) and the YS (  σ   e ) was equal to 1240 MPa 
(180  ×  10 3    psi). As the displacements obtained were relatively 
large compared  with  the dimensions of the transvers e  section, 
the problem is non-linear. Thus, the matrix [  K  ] in  equation (1)  
depends on the vector    {   u   } , characterizing a non-linear system 
of equations. The activation was performed in increments of 
1   mm in the horizontal direction, and considered maximum 
when, at any point, the spring material reached its yield stress 
limit and, consequently, suffered permanent deformation. At 
this point ,  the simulation process was terminated.      

  
 Figure 1      Delta  spring   dimensions.   The  arrows indicate  the  force 
system (vertical and horizontal forces and alpha moment     ).    

 Table 1      Spring dimensions and parameters .   

  Parameters Tolerance Dimensions  

  Radius (°)  ± 0.1 1.5 
 Height (mm)  ± 0.1 7.8 
 Angle  δ  (°)  ± 1 60 
 Angle  α  (°)  ± 1 20 
 Angle  β  (°)  ± 1 10 
 Angle  γ  (°)  ± 1 45 
 Length (mm)  ± 0.5 25 
 Cross-section (inches)  — 0.016 × 0.022  

  Samples 

 Twelve springs were manufactured using a titanium  –
  molybdenum wire (Morelli, São Paulo, Brazil) with a 0.406  ×  
0.559 mm (0.016  ×  0.022   in ches ) cross-section. The 
geometric con guration was characterized by having a 
central delta with an apical circumvolution with  a radius of 
 1.5 mm and  a  one   and a half-turn helix in its superior portion 
and gable bends in the horizontal extremities ( Figure 1 ). 
The spring features were observed in relation to their 
reproducibility in a pro  le projection device (Projection 
Screen 560  ×  460 mm, 0.5 per   cent; working scale 0.1 mm ; 
 Henri Hauser SA, Bienne, Switzerland). Only the springs 
whose angular and linear dimensions were within the 
established tolerance limit were tested ( Table 1 ). The 
geometric parameters were de  ned as alpha, beta, gama ,  
and sigma angles.      

  Experimental  method  

 It was established that Fx forces are caused by the activation 
of the spring in a horizontal direction, whereas Fy forces 
indicate vertical forces, which are perpendicular to Fx. 
Finally, Mz indicates the moment due to the inclinations in 
the extremities of the spring (sagittal plane). The springs 
were adapted for testing (A 1   mm right angle bend was 
placed in the alpha end to prevent sliding during activation  
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while the   b eta end was freely dislocated to activation) in a 
platform transducer. Each spring was activated from 0 to 
6 mm. The transducer was calibrated by deadweight 
techniques. An analogue conditioner signal module feed 
by a 15   V source (Tektronix PS 280 DC Power Supply, 
Alpharetta, Georgia ,  USA ) was attached to the transducer 
 to  amplify the variation of the signal emitted by the strain 
gauges after spring activation ( Figure 2 ). The analogue 

  
 Figure 2      Transducer set. Platform (aluminum structure made up of a 
cross-shaped beam tied to its internal part, with 12 strain gauges; Power 
Source and Analogue Conditioner Signal Module.    

 Table 2      Descriptives  statistics   and   means  of force activation Fx .   

  Activation (mm)  n Mean (gf) Standard deviation Standard error 95% con dence interval for mean Minimum Maximum 

 Lower bound Upper bound  

  0 30 11.86 33.23 6.06  − 0.549 24.27  − 26.13 58.48 
 1 30 46.07 29.94 5.46 34.89 57.26 11.19 89.58 
 2 30 76.52 26.40 4.82 66.66 86.38 44.79 111.98 
 3 30 107.25 21.80 3.98 99.11 115.39 77.14 136.86 
 4 30 138.19 23.57 4.30 129.35 146.99 114.47 172.95 
 5 30 171.87 24.06 4.39 162.88 180.85 145.57 207.79 
 6 30 206.92 22.97 4.19 198.34 215.49 181.66 241.38  

electrical signals were converted to digital signals by means 
of a data acquisition board. The DASYLab® version 7.0  —
  Data Acquisition System Laboratory (National Instruments 
Company, Austin, Texas, USA) software collected the 
signals from the data acquisition board.      

  Statistical  analysis  

 Descriptive statistics for Fx are shown in  Table 2 . A one-
way analysis of variance (ANOVA) for the experimental 
method was  rst performed in order to evaluate differences 
in Fx mean values according to activation. ANOVA showed 
a difference of  P   ≤  0.01( Table 3 ). The Games  –  Howell 
parametric multiple comparison test for heterogeneous 
variances was then used in order to identify the activations 
that were different ( Table 4 ). This test highlighted a 
difference in all activations showing that mean forces 
increased and were signi cantly different for each activation 
level. The numerical method generates, for each activation, 
a mean value calculated by the software in a simultaneous 
way for the Fx parameter. Thus, there is no deviation. It is 
therefore necessary to compare the experimental method 
 with  the numerical method parameter. For each Fx activation 
in the numerical method, a comparison  with  the mean 
values found for experimental Fx was performed, at each 
activation level, by means of a  Student ’ s   t -test.               

  Results 

  Stress  –   strain  levels (numerical approach) 

 The stress level obtained with the numerical approach 
varied from 277 to 1273 MPa  and  from 1.4 to 8.1 mm of 

 Table 3      One- way analysis of variance   —   tests  of  between - activations   e ffect  for  the  data —   d ependent  variable   force  (Fx) .   

  Source Sum of squares df Mean square  F  P  value Observed power  

  Activation (mm) 865324.42 6 144220.73 208.74 0.00 1.00 
 Error 140250.98 203 690.89  
 Corrected total 1005575.40 209   
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activation, respectively ( Table 5 ).  Figure 3  show s  the 
behaviour of the spring from von Mises stress analysis at 
7 mm. At this activation ,  the springs were still below the 
elastic region (1082 MPa) and the superior part of the 
helical circumvolution showed the greater stress level.          

  Force levels 

 In the numerical test ,  a maximum activation of 8.1 mm 
was considered. Horizontal forces (Fx) varied from 0.1 N 
(10 g f ) to 1.5 N (152  g f) fo r  1.4  –  6.1 mm activation. At 
maximum activation of 8.1 mm ,  the resulting force 
magnitude was about 2.2 N (224   gf). Vertical forces (Fy) 
showed constancy and were of low magnitude and could 
be disregarded. In the experimental test ,  a maximum 

activation of 6 mm was considered. Horizontal forces 
(Fx) varied from 0.44 N (45  g f) at 1 mm to 2.02 N (206  g f) 
at 6 mm of activation. The spring gradient (spring rate) 
denotes the number of force  –  grams stored for each 
 millimetre  of activation. The spring rate in the present 
study was within the levels that are appropriate for 
clinical use (34 g f /mm).  Figure 4a  show s  the behaviour 
of the experimental and numerical plots in relation to 
force versus activation and  Figure 4b  in relation to 
moment/force  ( M/F )  ratio versus activation. There was a 
straight line from  the  plots even though the curves 
showed different angular coef cients. When  analysing 
 M/F ratio versus activation, more coincidence between 
plots was observed and M/F ratio decreased as activation 

 Table 4      Games  –  Howell  parametric   multiple   comparisons   test  for  heterogeneous   variances;   dependent   variable : Fx .   

  Activation (mm)  n Mean difference (I − J) Standard error  P  value 95% con dence interval 

 Lower bound Upper bound  

  0 1  − 34.21 8.16 0.00  − 59.17  − 9.26 
 2  − 64.66 7.74 0.00  − 88.37  − 40.94 
 3  − 95.39 7.25 0.00  − 117.68  − 73.10 
 4  − 126.33 7.43 0.00  − 149.14  − 103.52 
 5  − 160.01 7.49 0.00  − 182.97  − 137.05 
 6  − 195.05 7.37 0.00  − 217.68  − 172.43 

 1 0 34.21 8.16 0.00 9.26 9.17 
 2  − 30.44 7.28 0.00  − 52.71  − 8.16 
 3  − 61.17 6.76 0.00  − 81.90  − 40.45 
 4  − 92.11 6.95 0.00  − 113.40  − 70.82 
 5  − 125.79 7.01 0.00  − 147.24  − 104.34 
 6  − 160.84 6.89 0.00  − 181.93  − 139.74 

 2 0 64.66 7.74 0.00 40.94 88.37 
 1 130.44 7.28 0.00 8.16 2.71 
 3  − 30.73 6.25 0.00  − 49.85  − 11.61 
 4  − 61.67 6.46 0.00  − 81.41  − 41.92 
 5  − 95.35 6.52 0.00  − 115.27  − 75.42 
 6  − 130.39 6.38 0.00  − 149.92  − 110.87 

 3 0 95.39 7.25 0.00 73.10 117.68 
 1 61.17 6.76 0.00 40.45 81.90 
 2 30.73 6.25 0.00 11.61 49.85 
 4  − 30.94 5.86 0.00  − 48.85  − 13.03 
 5  − 64.61 5.92 0.00  − 82.73  − 46.50 
 6  − 99.66 5.78 0.00  − 117.32  − 82.00 

 4 0 126.33 7.43 0.00 103.52 149.14 
 1 92.11 6.95 0.00 70.82 113.40 
 2 61.67 6.46 0.00 41.92 81.41 
 3 30.94 5.86 0.00 13.031 48.85 
 5  − 33.67 6.14 0.00  − 52.46  − 14.89 
 6  − 68.72 6.00 0.00  − 87.07  − 50.37 

 5 0 160.01 7.49 0.00 137.05 182.97 
 1 125.79 7.01 0.00 104.34 147.24 
 2 95.35 6.52 0.00 75.42 115.27 
 3 64.61 5.92 0.00 46.50 82.73 
 4 33.67 6.14 0.00 14.89 52.46 
 6  − 35.04 6.07 0.00  − 53.59  − 16.49 

 6 0 195.05 7.37 0.00 172.43 217.68 
 1 60.84 6.89 0.00 139.74 181.93 
 2 130.39 6.38 0.00 110.87 149.92 
 3 99.66 5.78 0.00 82.00 117.32 
 4 68.72 6.00 0.00 50.37 87.07 
 5 535.04 6.07 0.00 16.49 53.59  
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by a 15   V source (Tektronix PS 280 DC Power Supply, 
Alpharetta, Georgia ,  USA ) was attached to the transducer 
 to  amplify the variation of the signal emitted by the strain 
gauges after spring activation ( Figure 2 ). The analogue 

  
 Figure 2      Transducer set. Platform (aluminum structure made up of a 
cross-shaped beam tied to its internal part, with 12 strain gauges; Power 
Source and Analogue Conditioner Signal Module.    

 Table 2      Descriptives  statistics   and   means  of force activation Fx .   

  Activation (mm)  n Mean (gf) Standard deviation Standard error 95% con dence interval for mean Minimum Maximum 

 Lower bound Upper bound  

  0 30 11.86 33.23 6.06  − 0.549 24.27  − 26.13 58.48 
 1 30 46.07 29.94 5.46 34.89 57.26 11.19 89.58 
 2 30 76.52 26.40 4.82 66.66 86.38 44.79 111.98 
 3 30 107.25 21.80 3.98 99.11 115.39 77.14 136.86 
 4 30 138.19 23.57 4.30 129.35 146.99 114.47 172.95 
 5 30 171.87 24.06 4.39 162.88 180.85 145.57 207.79 
 6 30 206.92 22.97 4.19 198.34 215.49 181.66 241.38  

electrical signals were converted to digital signals by means 
of a data acquisition board. The DASYLab® version 7.0  —
  Data Acquisition System Laboratory (National Instruments 
Company, Austin, Texas, USA) software collected the 
signals from the data acquisition board.      

  Statistical  analysis  

 Descriptive statistics for Fx are shown in  Table 2 . A one-
way analysis of variance (ANOVA) for the experimental 
method was  rst performed in order to evaluate differences 
in Fx mean values according to activation. ANOVA showed 
a difference of  P   ≤  0.01( Table 3 ). The Games  –  Howell 
parametric multiple comparison test for heterogeneous 
variances was then used in order to identify the activations 
that were different ( Table 4 ). This test highlighted a 
difference in all activations showing that mean forces 
increased and were signi cantly different for each activation 
level. The numerical method generates, for each activation, 
a mean value calculated by the software in a simultaneous 
way for the Fx parameter. Thus, there is no deviation. It is 
therefore necessary to compare the experimental method 
 with  the numerical method parameter. For each Fx activation 
in the numerical method, a comparison  with  the mean 
values found for experimental Fx was performed, at each 
activation level, by means of a  Student ’ s   t -test.               

  Results 

  Stress  –   strain  levels (numerical approach) 

 The stress level obtained with the numerical approach 
varied from 277 to 1273 MPa  and  from 1.4 to 8.1 mm of 

 Table 3      One- way analysis of variance   —   tests  of  between - activations   e ffect  for  the  data —   d ependent  variable   force  (Fx) .   

  Source Sum of squares df Mean square  F  P  value Observed power  

  Activation (mm) 865324.42 6 144220.73 208.74 0.00 1.00 
 Error 140250.98 203 690.89  
 Corrected total 1005575.40 209   
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activation, respectively ( Table 5 ).  Figure 3  show s  the 
behaviour of the spring from von Mises stress analysis at 
7 mm. At this activation ,  the springs were still below the 
elastic region (1082 MPa) and the superior part of the 
helical circumvolution showed the greater stress level.          

  Force levels 

 In the numerical test ,  a maximum activation of 8.1 mm 
was considered. Horizontal forces (Fx) varied from 0.1 N 
(10 g f ) to 1.5 N (152  g f) fo r  1.4  –  6.1 mm activation. At 
maximum activation of 8.1 mm ,  the resulting force 
magnitude was about 2.2 N (224   gf). Vertical forces (Fy) 
showed constancy and were of low magnitude and could 
be disregarded. In the experimental test ,  a maximum 

activation of 6 mm was considered. Horizontal forces 
(Fx) varied from 0.44 N (45  g f) at 1 mm to 2.02 N (206  g f) 
at 6 mm of activation. The spring gradient (spring rate) 
denotes the number of force  –  grams stored for each 
 millimetre  of activation. The spring rate in the present 
study was within the levels that are appropriate for 
clinical use (34 g f /mm).  Figure 4a  show s  the behaviour 
of the experimental and numerical plots in relation to 
force versus activation and  Figure 4b  in relation to 
moment/force  ( M/F )  ratio versus activation. There was a 
straight line from  the  plots even though the curves 
showed different angular coef cients. When  analysing 
 M/F ratio versus activation, more coincidence between 
plots was observed and M/F ratio decreased as activation 

 Table 4      Games  –  Howell  parametric   multiple   comparisons   test  for  heterogeneous   variances;   dependent   variable : Fx .   

  Activation (mm)  n Mean difference (I − J) Standard error  P  value 95% con dence interval 

 Lower bound Upper bound  

  0 1  − 34.21 8.16 0.00  − 59.17  − 9.26 
 2  − 64.66 7.74 0.00  − 88.37  − 40.94 
 3  − 95.39 7.25 0.00  − 117.68  − 73.10 
 4  − 126.33 7.43 0.00  − 149.14  − 103.52 
 5  − 160.01 7.49 0.00  − 182.97  − 137.05 
 6  − 195.05 7.37 0.00  − 217.68  − 172.43 

 1 0 34.21 8.16 0.00 9.26 9.17 
 2  − 30.44 7.28 0.00  − 52.71  − 8.16 
 3  − 61.17 6.76 0.00  − 81.90  − 40.45 
 4  − 92.11 6.95 0.00  − 113.40  − 70.82 
 5  − 125.79 7.01 0.00  − 147.24  − 104.34 
 6  − 160.84 6.89 0.00  − 181.93  − 139.74 

 2 0 64.66 7.74 0.00 40.94 88.37 
 1 130.44 7.28 0.00 8.16 2.71 
 3  − 30.73 6.25 0.00  − 49.85  − 11.61 
 4  − 61.67 6.46 0.00  − 81.41  − 41.92 
 5  − 95.35 6.52 0.00  − 115.27  − 75.42 
 6  − 130.39 6.38 0.00  − 149.92  − 110.87 

 3 0 95.39 7.25 0.00 73.10 117.68 
 1 61.17 6.76 0.00 40.45 81.90 
 2 30.73 6.25 0.00 11.61 49.85 
 4  − 30.94 5.86 0.00  − 48.85  − 13.03 
 5  − 64.61 5.92 0.00  − 82.73  − 46.50 
 6  − 99.66 5.78 0.00  − 117.32  − 82.00 

 4 0 126.33 7.43 0.00 103.52 149.14 
 1 92.11 6.95 0.00 70.82 113.40 
 2 61.67 6.46 0.00 41.92 81.41 
 3 30.94 5.86 0.00 13.031 48.85 
 5  − 33.67 6.14 0.00  − 52.46  − 14.89 
 6  − 68.72 6.00 0.00  − 87.07  − 50.37 

 5 0 160.01 7.49 0.00 137.05 182.97 
 1 125.79 7.01 0.00 104.34 147.24 
 2 95.35 6.52 0.00 75.42 115.27 
 3 64.61 5.92 0.00 46.50 82.73 
 4 33.67 6.14 0.00 14.89 52.46 
 6  − 35.04 6.07 0.00  − 53.59  − 16.49 

 6 0 195.05 7.37 0.00 172.43 217.68 
 1 60.84 6.89 0.00 139.74 181.93 
 2 130.39 6.38 0.00 110.87 149.92 
 3 99.66 5.78 0.00 82.00 117.32 
 4 68.72 6.00 0.00 50.37 87.07 
 5 535.04 6.07 0.00 16.49 53.59  
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  Discussion 

 Clinicians hope to activate springs and visualize consequent 
tooth displacement in an ef cient way. In general ,   this  
is  undertaken  by means of activation, observation ,  
and fastening the springs as considered necessary. Even 
though spring behaviour is known, tooth anatomy and 
individual patient response are other variables that 
will in uence tooth movement. Knowledge of a spring ’ s 

 Table 5      Mean values of the force system for numerical test 
(  nite element method ) .   

  Activation 
(mm)

Fx (N) Fx (gf) Fy (N) Mz (N mm) Stress 
(MPa)

Mz/Fx 
(mm)  

  0 0.0 0.0  − 0.02 1.57 In nity 
 1.4 0.1 10.1  − 0.02 2.11 277 21 
 1.8 0.2 20.3  − 0.02 2.66 13 
 2.1 0.3 30.5  − 0.02 3.20 335 10.6 
 2.5 0.4 40.7  − 0.02 3.72 9.3 
 2.8 0.5 50.9  − 0.02 4.23 8.4 
 3.2 0.6 61.1  − 0.02 4.73 401 7.8 
 3.5 0.7 71.3  − 0.02 5.21 7.4 
 3.8 0.8 81.5  − 0.02 5.68 7.1 
 4.2 0.9 91.7  − 0.02 6.14 528 6.8 
 4.5 1.0 101.9  − 0.02 6.59 6.5 
 4.8 1.1 112.1  − 0.03 7.02 6.3 
 5.1 1.2 122.3  − 0.03 7.45 638 6.2 
 5.4 1.3 132.5  − 0.03 7.86 6.0 
 5.7 1.4 142.7  − 0.03 8.27 5.9 
 6.1 1.5 152.9  − 0.03 8.66 773 5.7 
 6.4 1.6 163.0  − 0.03 9.04 5.6 
 6.7 1.7 173.2  − 0.03 9.41 5.5 
 7.0 1.8 183.4  − 0.03 9.77 1082 5.4 
 7.3 1.9 193.6  − 0.03 10.11 5.3 
 7.6 2.0 203.8  − 0.03 10.45 5.2 
 7.8 2.1 214.0  − 0.03 10.77 5.1 
 8.1 2.2 224.2  − 0.03 11.08 1273 5.0  

  
 Figure 3      von Mises stress analysis  of the behaviour of the delta spring . 
 The   critical  area is near circumvolution. Yield strength is attained at 1240 
MPa     .    

increased. The M/F ratio obtained with the numerical 
approach varied from 7.1 at 3.8 mm of activation to 13.0 
at 1.8 mm of activation ( Table 5 ), while M/F ratio from 
 the  experimental tests was 7.2 at 6 mm of activation 
increasing to 8.7 and 10.7 for 5 and 4 mm of activation, 
respectively ( Table 6 ). The data may not exactly re ect 
clinical conditions, but the springs  showed  a tendency to 
produce controlled tooth movement if deactivated from 6 
to 3 mm. The delta spring simulated an M/F ratio capable of 
producing sequential movement of controlled inclination 
followed by translation and,  nally, by root correction 
during deactivation from 6 to 3 mm.           

 Table 6      Force system from  the  experimental tests     .  

  Activation (mm) Fx (gf) Fx (N) Mz (gf mm) Mz/Fx  

  0 6.3 0.05 1551 In nity 
 1 45 0.44 1504 33 
 2 76 0.74 1515 19 
 3 107 1.04 1511 14 
 4 138 1.34 1488 10.7 
 5 171 1.67 1486 8.7 
 6 206 2.02 1501 7.2  

  
 Figure 4       (A)  Behaviour of experimental and analytical plots in relation 
to force versus activation up to 7   mm  and (B)  M/F ratio versus activation 
up to 7   mm.    
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behaviour after application will minimize errors during 
activation. Although several studies ( Yang and Baldwin, 
1974 ;  Raboud  et al. , 1997 ;  Siatkowski, 1997 ) applied the 
FE method, only a few studies are dedicated to verifying 
stress  –  strain behaviour in orthodontic springs. In the present 
 research,  the results show that the most critical regions for 
YS are located at the horizontal arms and at the spring 
apical helix ( Figure 3 ). This means that the concentration of 
stress is located in the area close to the upper region, where 
the spring presents a circumvolution that serves as an 
imaginary axis around which the legs rotate. If there were 
no circumvolution, but just a  semi circle, as in the case of 
simple vertical springs, a smaller stress level would surpass 
the YS of the material. Clinically, springs with 
circumvolutions are more appropriate for wider activations. 
One advantage is that as delta springs are activated their 
legs cross over each other providing greater stability and 
avoiding bucco-lingual inclination. 

  Ferreira  et al.  (2009) , in a FE study, found for  titanium –
 molybedneum  asymmetric  delta  springs with a cross-
section of 0.406 × 0.559 mm (0.016  ×  0.022 inches) that 
critical stress (1108 MPa) was attained when the spring was 
activated 9 mm (in this case ,  the critical region is situated at 
the helix). In that study ,  a Young ’ s modulus of 69 GPa and 
a YS of 1380 MPa was assumed. It is not necessary for such 
large activation but this result con rms that it is an ef cient 
design to produce a long range of activation within a 
biomechanical force level. Concerning the stress results for 
5.1 mm of activation ,  the critical region arises from the 
helix and horizontal anterior leg region but is under that of 
 the  elastic region (638 MPa). At 6.1 mm of activation, the 
total helix and part of the anterior leg regions showed the 
highest stress but still under elastic stress (773 MPa). This 
value is approximately the maximum safe clinical activation. 

 Several factors might in uence spring design, such as 
the mechanical properties of the spring alloy, linear 
con guration ,  and cross-section. When comparing numerical 
and experimental methods ,  slight differences can occur. 
According to  Figure 4a and 4b  ,  these differences can be 
explained by the fact that the   material property (Young ’ s 
modulus) of the wire can be slightly different from that 
 analysed  with the FE method; crystallographic changes in 
metallurgic structure and residual stress are usually imposed 
in the spring ’ s manufacturing process by cold working 
(plastic deformation);  and  the boundary conditions in the 
numerical simulation may not be exactly the same in all 
experiments, i.e. during simulation, the constraining points 
were immobile but in the experiment there was some 
mobility. A comparison between numerical and experimental 
methods is helpful to verify the limits of the analytical model 
and to determine that the models can be reproduced. In the 
current study ,  when comparing the methods in relation to 
force magnitude versus activation ,  it was evident that in the 
analytical model there was minimal difference in curve 
inclination but in the force  –  moment versus activation the 

curves were similar, that is, for both methods there  was 
 concordance in relation to spring stiffness. 

 When the M/F ratio was  analysed,  agreement was found 
between the results obtained with both methods ( Figure 4b ). 
As soon as the spring  was  activated ,  the M/F relationship 
decreased ( Tables 5  and  6 ). In this way ,  extrapolating clinically 
numerical results show a limited spectrum for controlled tooth 
movement when compared with experimental results.  The 
  literature  shows that the M/F relationship decreases as the 
spring is activated and the present study con rms that ( Raboud 
 et al. , 1997 ;  Burstone, 1982 ;  Braun  et al. , 1997 ;  Siatkowski, 
1997 ;  Thiesen  et al. , 2005 ). However, the works of  Sander 
(2000)  and  Kum  et al.  (2004)  have found constant values  for  
the springs studied during deactivation from 6 mm to rest.  

  Conclusions 

 Delta springs produce a suitable force system compatible 
with sound biomechanics. Considering the values resulting 
from the spring  ’  s stress  –  strain behaviour, the force levels 
were adequate for high activations. Studies on orthodontic 
retraction springs should not only consider the force levels 
but also the stress  –  strain behaviour. If YS is surpassed 
during activation ,  the spring will work in a plastic region 
limiting its performance. Delta springs can be deactivated 
from 6 to 3 mm to produce canine retraction in a controlled 
movement and activated up to 7 mm to work safely within 
 the  elastic region.  
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  Discussion 

 Clinicians hope to activate springs and visualize consequent 
tooth displacement in an ef cient way. In general ,   this  
is  undertaken  by means of activation, observation ,  
and fastening the springs as considered necessary. Even 
though spring behaviour is known, tooth anatomy and 
individual patient response are other variables that 
will in uence tooth movement. Knowledge of a spring ’ s 

 Table 5      Mean values of the force system for numerical test 
(  nite element method ) .   

  Activation 
(mm)

Fx (N) Fx (gf) Fy (N) Mz (N mm) Stress 
(MPa)

Mz/Fx 
(mm)  

  0 0.0 0.0  − 0.02 1.57 In nity 
 1.4 0.1 10.1  − 0.02 2.11 277 21 
 1.8 0.2 20.3  − 0.02 2.66 13 
 2.1 0.3 30.5  − 0.02 3.20 335 10.6 
 2.5 0.4 40.7  − 0.02 3.72 9.3 
 2.8 0.5 50.9  − 0.02 4.23 8.4 
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 6.7 1.7 173.2  − 0.03 9.41 5.5 
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 Figure 3      von Mises stress analysis  of the behaviour of the delta spring . 
 The   critical  area is near circumvolution. Yield strength is attained at 1240 
MPa     .    

increased. The M/F ratio obtained with the numerical 
approach varied from 7.1 at 3.8 mm of activation to 13.0 
at 1.8 mm of activation ( Table 5 ), while M/F ratio from 
 the  experimental tests was 7.2 at 6 mm of activation 
increasing to 8.7 and 10.7 for 5 and 4 mm of activation, 
respectively ( Table 6 ). The data may not exactly re ect 
clinical conditions, but the springs  showed  a tendency to 
produce controlled tooth movement if deactivated from 6 
to 3 mm. The delta spring simulated an M/F ratio capable of 
producing sequential movement of controlled inclination 
followed by translation and,  nally, by root correction 
during deactivation from 6 to 3 mm.           

 Table 6      Force system from  the  experimental tests     .  

  Activation (mm) Fx (gf) Fx (N) Mz (gf mm) Mz/Fx  

  0 6.3 0.05 1551 In nity 
 1 45 0.44 1504 33 
 2 76 0.74 1515 19 
 3 107 1.04 1511 14 
 4 138 1.34 1488 10.7 
 5 171 1.67 1486 8.7 
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 Figure 4       (A)  Behaviour of experimental and analytical plots in relation 
to force versus activation up to 7   mm  and (B)  M/F ratio versus activation 
up to 7   mm.    
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behaviour after application will minimize errors during 
activation. Although several studies ( Yang and Baldwin, 
1974 ;  Raboud  et al. , 1997 ;  Siatkowski, 1997 ) applied the 
FE method, only a few studies are dedicated to verifying 
stress  –  strain behaviour in orthodontic springs. In the present 
 research,  the results show that the most critical regions for 
YS are located at the horizontal arms and at the spring 
apical helix ( Figure 3 ). This means that the concentration of 
stress is located in the area close to the upper region, where 
the spring presents a circumvolution that serves as an 
imaginary axis around which the legs rotate. If there were 
no circumvolution, but just a  semi circle, as in the case of 
simple vertical springs, a smaller stress level would surpass 
the YS of the material. Clinically, springs with 
circumvolutions are more appropriate for wider activations. 
One advantage is that as delta springs are activated their 
legs cross over each other providing greater stability and 
avoiding bucco-lingual inclination. 

  Ferreira  et al.  (2009) , in a FE study, found for  titanium –
 molybedneum  asymmetric  delta  springs with a cross-
section of 0.406 × 0.559 mm (0.016  ×  0.022 inches) that 
critical stress (1108 MPa) was attained when the spring was 
activated 9 mm (in this case ,  the critical region is situated at 
the helix). In that study ,  a Young ’ s modulus of 69 GPa and 
a YS of 1380 MPa was assumed. It is not necessary for such 
large activation but this result con rms that it is an ef cient 
design to produce a long range of activation within a 
biomechanical force level. Concerning the stress results for 
5.1 mm of activation ,  the critical region arises from the 
helix and horizontal anterior leg region but is under that of 
 the  elastic region (638 MPa). At 6.1 mm of activation, the 
total helix and part of the anterior leg regions showed the 
highest stress but still under elastic stress (773 MPa). This 
value is approximately the maximum safe clinical activation. 

 Several factors might in uence spring design, such as 
the mechanical properties of the spring alloy, linear 
con guration ,  and cross-section. When comparing numerical 
and experimental methods ,  slight differences can occur. 
According to  Figure 4a and 4b  ,  these differences can be 
explained by the fact that the   material property (Young ’ s 
modulus) of the wire can be slightly different from that 
 analysed  with the FE method; crystallographic changes in 
metallurgic structure and residual stress are usually imposed 
in the spring ’ s manufacturing process by cold working 
(plastic deformation);  and  the boundary conditions in the 
numerical simulation may not be exactly the same in all 
experiments, i.e. during simulation, the constraining points 
were immobile but in the experiment there was some 
mobility. A comparison between numerical and experimental 
methods is helpful to verify the limits of the analytical model 
and to determine that the models can be reproduced. In the 
current study ,  when comparing the methods in relation to 
force magnitude versus activation ,  it was evident that in the 
analytical model there was minimal difference in curve 
inclination but in the force  –  moment versus activation the 

curves were similar, that is, for both methods there  was 
 concordance in relation to spring stiffness. 

 When the M/F ratio was  analysed,  agreement was found 
between the results obtained with both methods ( Figure 4b ). 
As soon as the spring  was  activated ,  the M/F relationship 
decreased ( Tables 5  and  6 ). In this way ,  extrapolating clinically 
numerical results show a limited spectrum for controlled tooth 
movement when compared with experimental results.  The 
  literature  shows that the M/F relationship decreases as the 
spring is activated and the present study con rms that ( Raboud 
 et al. , 1997 ;  Burstone, 1982 ;  Braun  et al. , 1997 ;  Siatkowski, 
1997 ;  Thiesen  et al. , 2005 ). However, the works of  Sander 
(2000)  and  Kum  et al.  (2004)  have found constant values  for  
the springs studied during deactivation from 6 mm to rest.  

  Conclusions 

 Delta springs produce a suitable force system compatible 
with sound biomechanics. Considering the values resulting 
from the spring  ’  s stress  –  strain behaviour, the force levels 
were adequate for high activations. Studies on orthodontic 
retraction springs should not only consider the force levels 
but also the stress  –  strain behaviour. If YS is surpassed 
during activation ,  the spring will work in a plastic region 
limiting its performance. Delta springs can be deactivated 
from 6 to 3 mm to produce canine retraction in a controlled 
movement and activated up to 7 mm to work safely within 
 the  elastic region.  
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